
Site Reliability Engineering:
An Enterprise Adoption Story

Perry Statham
SRE Squad Leader, Bluemix DevOps Services

Ritchie Schacher
STSM, SRE Architect, Bluemix DevOps Services

Introductions

2

Perry Statham leads the SRE squad for the IBM®
Bluemix® Continuous Delivery offering. Since
joining IBM in 1998, he has been principle
developer and team leader of several application
management offerings; deployment architect of the
Jazz for Service Management tool set; lead
deployment outside-in designer; and technical
leader of an IaaS environment hosting more than
2000 virtual and bare metal machines.

Prior to IBM, Perry worked for many years with a
healthcare IT startup company where he did both
development and operations long before it became
known as DevOps.

Perry Statham
SRE Squad Leader
Bluemix DevOps Services

Ritchie Schacher is a Senior Technical Staff
Member with IBM® Bluemix® DevOps Services,
and lead architect for SRE. He has a background in
developer tools and team collaboration. He has
broad experience in all aspects of the software
development lifecycle, including product
conception, planning and managing, design, coding,
testing, deploying, hosting, releasing, and
supporting products.

For the last 3 years he has been a part of an exciting
team developing and supporting cloud-based SaaS
offerings for Bluemix®. In his spare time, Ritchie
enjoys playing classical guitar.

Ritchie Schacher
STSM SRE, Architect
Bluemix DevOps Services

Once upon a time…

…there were two teams in a large company.

3

One of the teams developed
software products.

01001001
01000010
01001101

The other team operated
hosted instances of those
products.

wtf?

Then along came DevOps. Yay!

4

Build it. Deploy it. Run it. Manage it.

01001001
01000010
01001101

It was a huge improvement, but…

§ How do we balance change velocity vs. availability, reliability, security, and other
operational attributes? For example:

– Do we fix a bug in the UI, or do we fix a bug that intermittently requires the backend app to be
restarted?

– Do we add a great new feature, or do we automate backups?
– Do we improve an app’s performance, or do we reduce its mean time to recovery (MTTR)?
– Do we improve deployment automation, or do we improve standards compliance?

§ When each service squad has it’s own DevOps process:
– How do we encourage process consistency and discipline?
– How do we scale specialized reliability engineering skills?
– How do we avoid incident response burnout?

5

Note: With some our own additions and interpretations, this
section largely comes from the Google SRE Book [Book]. All
quotes without a reference are from the same book.

Any misunderstandings are ours and not the fault of the book
authors.

Site Reliability Engineering

§ “One could … view SRE as a specific implementation of DevOps with some idiosyncratic
extensions.”

§ “In general, an SRE team is responsible for the availability, latency, performance, efficiency,
change management, monitoring, emergency response, and capacity planning of their
service(s).”

6

“What is Site Reliability Engineering as it has become defined at
Google? My explanation is simple: SRE is what happens when
you ask a software engineer to design an operations team.” –
Benjamin Traynor Sloss, Vice President, Engineering, Google

SRE Principles and Tenets

7

§ Know the Service Level

§ Embrace Risk

§ Eliminate Toil

§ Know What's Broken and Why

§ Stuff Happens

§ Automate [Almost] Everything

§ Reliable Releases

§ Keep it Simple

Know the Service Level

§ Indicators (SLI): a carefully defined quantitative measure of some aspect of the level of
service that is provided

– Examples include availability, request latency, error rate, and system throughput.
– Be wary of using the mean (average) of a set of metrics collected over some period of time,

since outliers are often hidden.
– Percentiles usually provide much better metric aggregations.
– No more than a handful. Not every metric makes a good SLI.

§ Objectives (SLO): a target value or range of values for a service level that is measured
by an SLI

§ Agreements (SLA): an explicit or implicit contract with your users that includes
consequences of meeting (or missing) the SLOs they contain

8

Embrace Risk

§ Goal is to explicitly align the risk taken by a given service with the risk the business is
willing to bear.

– Strive to make a service reliable enough, but no more reliable than it needs to be.

§ Which availability metric?
– Time Based: Uptime / (Uptime + Downtime)
– Request Based: Successful Requests / (Total Requests)
– Something else?

9

Embrace Risk: Error Budgets

§ Error Budgets balance the goals of
– Product development teams, which are largely evaluated on product velocity, which creates an incentive

to push new code as quickly as possible; and
– SRE teams, which are evaluated based upon reliability of a service, which implies an incentive to push

back against a high rate of change

§ A service’s error budget is 100% minus the SLO (e.g.100 - 99.95% = .05%)
– In general, for any software service or system, 100% is not the right reliability target because no user

can tell the difference between a system being 100% available and 99.999% available.
§ SRE’s goal is no longer “zero outages”; rather, SREs and product developers aim to spend the error budget

getting maximum feature velocity.
§ An outage is no longer a “bad” thing – it is an expected part of the process of innovation, and an occurrence that

both development and SRE teams manage rather than fear.

§ Whenever a service exceeds their error budget, ALL WORK MUST be related to improving
availability.

10

Embrace Risk: Error Budgets

11

“An error budget stems from this basic observation: 100% is the wrong reliability target for basically
everything. The business or the product must establish what the availability target is for the system. If the

service natively sits there and throws errors, you know, .01% of the time, you're blowing your entire
unavailability budget on something that gets you nothing. So you have an incentive in both the development
world and the SRE team to improve the service's native stability so that you'll have budget left to spend on

things you do want, like feature launches.” – Ben Traynor [Tra17]

“The other crucial advantage of this is that SRE no longer has to apply any judgment about what the
development team is doing. SRE measures and enforces, but we do not assess or judge. Our take is "As long
as your availability as we measure it is above your Service Level Objective (SLO), you're clearly doing a good
job. You're making accurate decisions about how risky something is, how many experiments you should run,

and so on. So knock yourselves out and launch whatever you want. We're not going to interfere." And this
continues until you blow the budget.”

– Ben Traynor [Tra17]

Eliminate Toil

§ In SRE, we want to spend time on long-term engineering project work instead of
operational work.

– Because the term operational work maybe misinterpreted, we use a specific word: toil.
– SREs should spend less than X% of their time on toil and the rest on coding

§ Excess toil is redirected to development team

§ Toil is mundane, repetitive operational work providing no enduring value, which scales
linearly with service growth.

§ The work of reducing toil and scaling up services is the “Engineering” in Site Reliability
Engineering

12

“If a human operator needs to touch your
system during normal operations, you have a

bug. The definition of normal changes as your
systems grow. - Carla Geisser, Google SRE

Know What’s Wrong and Why

§ If you can’t monitor a service, then you don’t know what’s happening, and if you’re blind to what’s
happening, then you can’t be reliable.

§ Monitoring a complex application is a significant engineering endeavor in and of itself.

§ Monitoring should answer the questions:
– What’s wrong?
– Why is it wrong?

§ Use the right output:
– Alerts: Signify that a human needs to take action immediately in response to something that is either

happening or about to happen.
– Tickets: Signify that a human needs to take action, but not immediately.
– Logging: No one needs to look at this information, but it is recorded for diagnostic or forensic purposes.

§ Metrics that are useful for overall system operation, but do not influence major user interactions,
are not usually SLIs.

– For example, disk space metrics are not usually web UI application indicators.
13

“…a system that requires a human to read an email and
decide whether or not some type of action needs to be taken
in response is fundamentally flawed. Monitoring should never
require a human to interpret any part of the alerting domain.

Instead, software should do the interpreting, and humans
should be notified only when they need to take action.”

Stuff Happens, So Reduce Repair Time

§ Reliability is a function of mean time to failure (MTTF) and mean time to repair (MTTR)
[Sch15]

– The most relevant metric in evaluating the effectiveness of emergency response is how
quickly the response team can bring the system back to health – that is, the MTTR.

§ Humans add latency
– Even if a given system experiences more actual failures, a system that can avoid emergencies

that require human intervention will have higher availability than a system that requires hands-
on intervention.

14

Automate [Almost] Everything

§ Automation provides
– Consistency as systems scale
– A platform for extending to other systems
– Faster repairs for common problems
– Faster action than humans
– Time savings by decoupling operator from operation

§ But it’s not a panacea
– It can hide systemic problems.

§ For example, auto-restarting a process periodically can hide memory leaks
– It can perform the wrong, or even a damaging, operation because of a poor design or implementation

§ Remember the old adage “Garbage-In, Garbage-Out”

15

“If we are engineering processes and solutions that are
not automatable, we continue having to staff humans to

maintain the system. If we have to staff humans to do the
work, we are feeding the machines with the blood, sweat,

and tears of human beings. Think The Matrix with less
special effects and more pissed off System

Administrators.” - Joseph Bironas, Google SRE

Reliable Releases

§ Running reliable services requires reliable release processes.

§ Continuously build and deploy, including
– Automating check gates
– A/B deployments and other methods for checking sanity

§ As an SRE, don’t be afraid to roll-back a problem release.

§ Use engineering principles to manage configuration, including
– Treating configuration as code, with

§ version control
§ reviews and checks
§ testing
§ change management

– Automating configuration “deployment”

16

Keep it Simple

§ Types of complexity:
– Essential complexity is the complexity inherent in a given situation that cannot be removed

from a problem definition.
– Accidental complexity is more fluid and can be resolved with engineering effort

§ SREs minimize accidental complexity
– They push back when it’s introduced into systems
– They constantly strive to eliminate complexity in systems they onboard and for which they

assume operational responsibility

§ Every new line of code written is a liability.
– SRE promotes practices that make it more likely that all code has an essential purpose, such

as scrutinizing code to make sure that it actually drives business goals, routinely removing
dead code, and building bloat detection into all levels of testing.

17

The price of reliability is the pursuit of the utmost
simplicity. - C.A.R. Hoare, Turing Award lecture

Our Adoption Story

A version of the rest of our slides was shown at SRECon17 Americas during the session

I’m an SRE Lead! Now What?
How to Bootstrap and Organize Your SRE Team.

The recording is available at https://www.usenix.org/conference/srecon17americas/program/presentation/schacher

18

A Staged Approach

1. Define Scope and Obtain Stakeholder Buy-in

2. Define Tools, Processes, and Backlog

3. Build and Organize the SRE Team

4. Implement and Evolve

19

Maturity/Phase

Scale

Velocity

Impact

Iterate along the way

Define Scope and Obtain Stakeholder Buy-in
Build the leadership team and the mission

§ SRE Technical leads, Service Managers, Architects

§ Subject matter experts

§ Define core values

Define the roles and responsibilities (SRE - Dev)

Define the Benchmarks
§ Scorecards and checklists

§ Promotion gates and approvals

Ensure stakeholder buy-in
§ Executives

§ Peer service managers

§ Service tech leads

20

Example: SRE Values

21

We are obsessed with availability and reliability

We are an Engineering team
§ We promote a high-performance culture
§ We fill our skills gaps as necessary
§ We have an automation mindset
§ We use metrics, monitoring and measurement to ensure

accountability
§ We use Agile to manage our workload

We shape direction and Positively Influence Outcomes for our services
§ Our RCA actions, checklists, and gap analyses directly feed into

development prioritization

We partner with the service teams in all respects
§ We understand and can use our services and capabilities
§ We focus on the customer experience
§ We discourage an ”us vs. them” mindset
§ We align our priorities

We respect the autonomy of the service squads

Example: SRE Responsibilities and Control Points

22

Responsibilities
§ Maintain Stated Availability of Service
§ Incident, Problem, Capacity, Security, and Change Management
§ Development of features that enhance Site Availability
§ Automation and Monitoring Development
§ Creation and Publishing of Dashboards and Availability Metrics

Control Points
§ Provide Architectural Review and Signoff on a Service based on ability to achieve availability targets
§ Accept or Reject services based on their ability to achieve SLA
§ Own the Pipeline and Deployments to production
§ Gate changes into a production Service contingent on error budget
§ Use Error Budget to balance development prioritization between SRE content and new features

Decisions and recommendations of the SRE team are independent of functional or date commitments

Define Tools, Processes, and Backlog

Know, define or redefine tools and processes
§ Tracking and Planning

§ Monitoring and Availability Reporting

§ Recovery Procedures & Automation

§ Incident Management

§ RCAs (with traceability and reporting)

§ Deployments

§ Test reporting

§ Collaboration

23

24

24x7

Technical
Operations
Center
First Responders

Escalation / SWAT

Communication /
Actions

Automation
Event
Mgmt

System

Monitoring
Sources

Support
Tickets

Incident Response Manager

SME Engineer

SME Engineer

Engineer SRE Response Team

Manager

Collaboration
ToolMonitoring Sources

Support Tickets

Squad Leader

Squad Engineer

Squad Engineer

Bots

SRE & Dev
Community

Platform
Engineering

Automatio
n

Response Mgr
Engineer

Monitoring Sources

Velocity
• Incidents can be resolved by multiple (e.g. TOC, SRE,

Dev) teams via multiple entry points
• Consistent data flows ensure consistent metrics

Multi-Level Response
• Lowers cost for incidents that do not require deep skills
• Layered response ensures incidents are always handled

Correlation /
Enrichment

Dependency
Identification

Impact Assessment

Exception(s)

Alert Notification
System

Reactive Proactive

DevOps Squad(s)

Example: Incident Operational Model

Define Tools, Processes, and Backlog
Establish tracking and planning first; everything else becomes
a prioritized work item

Organize SRE backlog

Ensure prioritization of SRE work items is consistent with
feature/function of service

Determine control points for adjusting work priorities, e.g.
§ 7 day / 30 day availability metrics
§ Business priorities of the service
§ Security compliance

Establish collaboration communication and consistent information
sharing

§ Where do you go to find specific information types?
§ Expedite information access and team communication

during incident recovery

25

Build and Organize the Team
Build the engineering team

§ New hires or rotational assignments?
§ Evaluate candidate skills and experience
§ Ensure broad skill coverage across all aspects of SRE

Organize vertically and horizontally: by service and by discipline

Designate SMEs for each service

§ Avoid Human SPoF

Develop domain expertise (in the services)
§ Architecture and topology, development environments, microservices, deployments
§ Acquire skills to develop SRE enhancements to service

Define and train call out groups for incident resolution

Cultivate the SRE mindset
§ Leadership coaching, all hands meetings, reinforce SRE values, conduct retrospectives

26

27

SRE Engineers

Leadership

Infrastructure
Environments

Tooling
Frameworks

Feature

FeatureSRE

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

InfrastructureSRE

Feature Feature

FeatureFeatureSRE FeatureSRE

FeatureSRE

FeatureSRE

FeatureSRE

FeatureSRE

FeatureSRE FeatureSRE

Feature

ToolingSRE

AutomationSREInfrastructureSRE

InfrastructureSRE

SquadSquadSquadSquadSquad

Automation Framework
Self Service Infrastructure
Logging & Metrics
Monitoring & Reporting
Scaling

High Availability
Rate Limiting
Zero Downtime Deployment
Resiliency
Serviceability

SRE	Backlog	examples Feature	Squad	SRE	Backlog	examples

SRE	Squad
§ SRE	STSM	drives	org-wide	priorities
§ Engineers	rotate	on	flexible	cadence	between	

SRE	and	Feature	squads	(some	core	remain)

Service	Development	Squads
§ Levels	of	maturity	drive	amount	of	resource	required	for	SRE	backlog
§ 90%	of	the	time	these	team	members	are	the	ones	making	code	
changes	to	the	service	

MonitoringSRE

SRE Squad to Service Squad Operational Model

Implement and Evolve
Used a phased implementation for SRE ownership of a Service

§ Level I: Monitoring and reporting tool frameworks, first responder service, Incident
Manager support, RCA leadership

§ Level II: Incident Mgmt, Deployment Mgmt, Availability, Security, Compliance and
BC/DR

Onboard services to entry level of SRE ownership (Level 1)

Conduct gap analysis of services to:
§ Assess the maturity of the service
§ Identify gaps gating full SRE take over

Define a roadmap of activities required for SRE Ownership and collaborate with
service development to build a plan to address

Define service SLOs and SLIs

Implement SLI monitoring and reporting

SRE Take over of services (Level II Full SRE Ownership)

28

Avoiding Pitfalls and Lessons Learned
Manage expectations

§ Agree on the mission and scope first
§ Keep it grounded in reality (e.g. development is NOT off the hook)
§ Review and negotiate the roles and responsibilities
§ Get buy-in from everyone

Don’t throw an army of engineers at the problem before you have your mission, scope and backlog
defined

§ Engineers will appreciate a plan and structure with clearly communicated expectations
§ Executives and peer development managers will know what their role is and what to expect

Crawl, Walk, Run
§ Tackle the obvious items first (e.g RCAs, monitoring gaps, runbooks, processes, reducing MTTA/MTTR)
§ Show early success, incremental progress
§ Build on success with improved metrics and automation

Ruthlessly prioritize the backlog
§ Better to select a handful of items to focus on and do well, than try to do everything with slow velocity
§ Review the priorities monthly with stakeholders
§ Practice Agile!

29

Avoiding Pitfalls and Lessons Learned

DevOps and SRE are more than just rebranding of Dev and Operations
§ Push the engineers out of an ops mindset, comfort zone
§ Watch for an ”us vs. them” culture
§ Be pragmatic vs. purist, without sacrificing principles
§ Push for automation

SRE doesn’t come for free
§ This is a focus that did not exist before; either pull resources from services or hire new
§ Short term velocity will be slow but will improve
§ Good thing is that once established, this approach scales

Not enough engineers, not right skills
§ SRE must be seeded with engineers experienced in the services
§ Establish a resource rotation model with development to balance out the team
§ Negotiate with the stakeholders; know who they are sending over

30

Our Services

Garage Method

32
ibm.com/devops/method

Combine industry practices, including IBM
Design Thinking, Lean Startup, agile
development, and continuous delivery,
to build innovative solutions

Open Toolchain

33

A sample open toolchain for building, and deploying and
managing three microservices

Toolchains provide an integrated set of tools that
support the best practices to build, deploy and
manage your apps.

You can create toolchains that include Bluemix
services, open source tools, and third-party tools that
make development and operations repeatable and
easier to manage.

Rapidly instantiate new toolchains from templates to
on-board new teams quickly.

Create and manage toolchains of best-of-breed industry tools

bluemix.net/devops

Integrated Delivery Pipeline

34

Easy Setup
• Deploy an application from a Git repository in a

few clicks.

Continuous Integration
• Automate builds and deployments for many

types of code, running builds automatically
when code changes.

Continuous Testing
• Integrate automated unit tests as part of your

builds.
Continuous Deliver to Multiple Cloud
Platforms
• Deploy applications to one or many Cloud

Foundry or IBM Containers on Bluemix
environments.

Thank you!

References

§ [Book] B. Beyer, et. al., “Site Reliability Engineering: How Google Runs Production Systems”,
ISBN: 9781491929124

§ [Try17] B. Traynor, “What is ‘Site Reliability Engineering’?”, blog post, captured 15 April 2017.

§ [Sch15] B. Schwartz, “The Factors That Impact Availability, Visualized”, blog post, 21 December
2015.

36

