Beyond the Knowledge Base: Turning Data into Wisdom

Michael Cardinal
mcardina@teksystems.com
Today's Points

- Knowledge Management (KM) and Data-Information-Knowledge-Wisdom (DIKW)
- Learning Loops
- Systems Thinking
- Effective Questioning
- Bringing it Together
Knowledge Management and DIKW
KM is More than the KB

- Identification
- Capture
- Enterprise Glossary
- Definitions
- Classifications

- SKMS
- KB
- Info Architecture

- Learning Styles
- Behavior

- Ownership
- Maintenance
- Updates
- Archiving

Strategy

Transfer

Usage

Management
- **Data**
 - A set of discrete facts

- **Information**
 - Contextualized and organized data

- **Knowledge**
 - Critical thinking, analysis, experience, insights, value and judgments applied to information for use in decision making

- **Wisdom**
 - "Double Loop Learning" applied to knowledge
Data and Information

<table>
<thead>
<tr>
<th>Week Ending</th>
<th>Weekly Opened</th>
<th>Weekly Closed</th>
<th>Production Calls</th>
<th>Work Days</th>
<th>Average Daily Opened</th>
<th>Average Daily Closed</th>
<th>Average Daily Production Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Apr</td>
<td>51</td>
<td>15</td>
<td>27</td>
<td>3</td>
<td>17.00</td>
<td>5.00</td>
<td>9.00</td>
</tr>
<tr>
<td>10-Apr</td>
<td>58</td>
<td>29</td>
<td>19</td>
<td>6</td>
<td>9.67</td>
<td>4.83</td>
<td>3.17</td>
</tr>
<tr>
<td>17-Apr</td>
<td>70</td>
<td>66</td>
<td>19</td>
<td>5</td>
<td>14.00</td>
<td>13.20</td>
<td>3.80</td>
</tr>
<tr>
<td>24-Apr</td>
<td>49</td>
<td>32</td>
<td>11</td>
<td>5</td>
<td>9.80</td>
<td>6.40</td>
<td>2.20</td>
</tr>
<tr>
<td>1-May</td>
<td>59</td>
<td>49</td>
<td>13</td>
<td>6</td>
<td>9.83</td>
<td>8.17</td>
<td>2.17</td>
</tr>
<tr>
<td>8-May</td>
<td>93</td>
<td>59</td>
<td>31</td>
<td>6</td>
<td>15.50</td>
<td>9.83</td>
<td>5.17</td>
</tr>
<tr>
<td>15-May</td>
<td>78</td>
<td>76</td>
<td>31</td>
<td>6</td>
<td>13.00</td>
<td>12.67</td>
<td>5.17</td>
</tr>
<tr>
<td>22-May</td>
<td>80</td>
<td>84</td>
<td>19</td>
<td>6</td>
<td>13.33</td>
<td>14.00</td>
<td>3.17</td>
</tr>
<tr>
<td>29-May</td>
<td>47</td>
<td>45</td>
<td>6</td>
<td>4</td>
<td>11.75</td>
<td>11.25</td>
<td>1.50</td>
</tr>
<tr>
<td>5-Jun</td>
<td>58</td>
<td>61</td>
<td>8</td>
<td>6</td>
<td>9.67</td>
<td>10.17</td>
<td>1.33</td>
</tr>
<tr>
<td>12-Jun</td>
<td>68</td>
<td>59</td>
<td>7</td>
<td>6</td>
<td>11.33</td>
<td>9.83</td>
<td>1.17</td>
</tr>
<tr>
<td>19-Jun</td>
<td>68</td>
<td>94</td>
<td>8</td>
<td>5</td>
<td>13.60</td>
<td>18.80</td>
<td>1.60</td>
</tr>
<tr>
<td>26-Jun</td>
<td>71</td>
<td>125</td>
<td>11</td>
<td>5</td>
<td>14.20</td>
<td>25.00</td>
<td>2.20</td>
</tr>
<tr>
<td>3-Jul</td>
<td>12</td>
<td>13</td>
<td>1</td>
<td>4</td>
<td>3.00</td>
<td>3.25</td>
<td>0.25</td>
</tr>
<tr>
<td>10-Jul</td>
<td>42</td>
<td>48</td>
<td>2</td>
<td>5</td>
<td>8.40</td>
<td>9.60</td>
<td>0.40</td>
</tr>
<tr>
<td>17-Jul</td>
<td>69</td>
<td>64</td>
<td>3</td>
<td>5</td>
<td>13.80</td>
<td>12.80</td>
<td>0.60</td>
</tr>
<tr>
<td>24-Jul</td>
<td>59</td>
<td>50</td>
<td>3</td>
<td>6</td>
<td>9.83</td>
<td>8.33</td>
<td>0.50</td>
</tr>
<tr>
<td>31-Jul</td>
<td>51</td>
<td>54</td>
<td>10</td>
<td>5</td>
<td>10.20</td>
<td>10.80</td>
<td>2.00</td>
</tr>
<tr>
<td>7-Aug</td>
<td>64</td>
<td>71</td>
<td>14</td>
<td>5</td>
<td>12.80</td>
<td>14.20</td>
<td>2.80</td>
</tr>
<tr>
<td>14-Aug</td>
<td>59</td>
<td>75</td>
<td>18</td>
<td>6</td>
<td>9.83</td>
<td>12.50</td>
<td>3.00</td>
</tr>
<tr>
<td>21-Aug</td>
<td>69</td>
<td>74</td>
<td>11</td>
<td>5</td>
<td>13.80</td>
<td>14.80</td>
<td>2.20</td>
</tr>
</tbody>
</table>
Knowledge

“How” did these incidents occur?

“Why” did these incidents occur?

- MTTR
- Average
- UCL
- LCL
Wisdom

- The key to Wisdom (and Knowledge Management) is “learning” and making decisions and taking actions based on what we learned
- Avoid “assumptions” or “opinions” without factual validation and verification
 - “Is that fact or opinion?”
Learning Loops
Chris Argyris

- Professor Emeritus-Harvard Business
- Co-Founding Father of concepts of Organizational Development and Learning Organizations
- Connection to Service Management
 - Theory of Action
 - The study of how human beings design their actions in difficult situations.
 - Double Loop Learning
 - The modification or rejection of a goal in the light of experience. DLL recognizes that the way a problem is defined and solved can be a source of the problem.
Theory of Action

- **Espoused Theory** *(What we tell others)*
 - The world view and values people **believe** their behavior is based on.
 - “I am a law abiding citizen”

- **Theory-in-use** *(What we actually do)*
 - The world view and values implied by their behavior, or the maps they use to take action.
 - “Police will not ticket you if you are just a little above the speed limit”
Double Loop Learning

Assume/Believe → Planning → Results

Single Loop Learning
“Definition of Insanity”

“Loop of Inference”

Double Loop Learning
“Out of the Box Thinking”

We infer that our assumptions, conclusions, beliefs, experience hold true for all time, when in reality they do not.
We infer that our assumptions, conclusions, beliefs, experience hold true for all time, when in reality they do not.
Management decisions made during Columbia's final flight reflect missed opportunities, blocked or ineffective communications channels, flawed analysis, and ineffective leadership.

...In fact, their management techniques unknowingly imposed barriers that kept at bay both engineering concerns and dissenting views, and ultimately helped create "blind spots" that prevented them from seeing the danger the foam strike posed.

-NASA Report of Columbia Accident Investigation
“The organizational causes of this accident are rooted in the Space Shuttle Program's history and culture, including the original compromises that were required to gain approval for the Shuttle Program, subsequent years of resource constraints, fluctuating priorities, schedule pressures, mischaracterizations of the Shuttle as operational rather than developmental, and lack of an agreed national vision. Cultural traits and organizational practices detrimental to safety and reliability were allowed to develop, including: reliance on past success as a substitute for sound engineering practices (such as testing to understand why systems were not performing in accordance with requirements/specifications); organizational barriers which prevented effective communication of critical safety information and stifled professional differences of opinion; lack of integrated management across program elements; and the evolution of an informal chain of command and decision-making processes that operated outside the organization's rules.”

-NASA Report of Columbia Accident Investigation
Bring Theory in Practice in line with Espoused Theory
Go back to your pool of data (even if just to validate accuracy and relevance)
Is that “Fact”[data] or “Opinion”[assumption]?
Make decisions on data, information and knowledge, not long standing assumptions
Systems Thinking
Peter Senge

- MIT-Sloan School of Management
- Systems Thinking
 - An approach to problem solving, where “problems” are parts of overall “systems”, rather than relating to specific parts, elements, processes, peoples, technologies, or DIKW [ala W. Edwards Deming]
- Connection to Service Management
 - Seeing all stages, processes and DIKW as interconnected parts of a “system”
 - An operational issue may be caused by a faulty design
“Systems“ Defined

- A system is composed of parts
- All the parts of a system must be related (directly or indirectly), else there are really two or more distinct systems
- A system is encapsulated (has a boundary)
- The boundary of a system is a decision made by an observer, or a group of observers
- A system can be nested inside another system
- A system can overlap with another system
- A system is bounded in time, but may be intermittently operational
- A system is bounded in space, though the parts are not necessarily co-located
- A system receives input from, and sends output into, the wider environment
- A system consists of processes that transform inputs into outputs
- A system is autonomous in fulfilling its purpose (a car is not a system. A car with a driver is a system)

After Peter Senge-Fifth Discipline et al
ITSM as a “System”
Systems Thinking

- Personal mastery (DATA)
 - “A discipline of continually clarifying and deepening our personal vision, of focusing our energies, of developing patience, and of seeing reality objectively.”

- Mental models (INFORMATION)
 - “Deeply ingrained assumptions, generalizations, or even pictures of images that influence how we understand the world and how we take action.”

- Building shared vision (KNOWLEDGE)
 - “A practice of unearthing shared pictures of the future that foster genuine commitment and enrollment rather than compliance.”

- Team learning (WISDOM)
 - “Starts with dialogue, the capacity of members of a team to suspend assumptions and enter into genuine thinking together.”

- Systems Thinking (KM AND SERVICE MANAGEMENT)
 - “The Fifth Discipline that integrates the other four.”

Peter Senge-Fifth Discipline
MONITOR-CONTROL LOOPS

After ITIL 2011 Axelos©
Effective Questioning
Benjamin Bloom

- Educational psychologist
- Developed theories around mastery-learning
- Knowledge=mastery of cognitive, affective, psychomotor domains
- Bloom’s Taxonomy
 - Step model based on increasing levels of critical thought
 - Knowledge and mastery builds through the levels
 - Can be applied in many situations to gain data, information, knowledge and wisdom
Bloom’s Taxonomy

1. Knowledge
2. Comprehension
3. Application
4. Analysis
5. Synthesis
6. Evaluation

Practitioner

Master
Expert

Foundation
Using Bloom

1. Knowledge • Information gathering
2. Comprehension • Confirming or translating
3. Application • Making use of data/information
4. Analysis • Breaking apart/deconstructing
5. Synthesis • Bringing together new ideas
6. Evaluation • Judging outcomes or validating

SUBJECTIVE

OBJECTIVE
Using Bloom

1. Knowledge • Data
2. Comprehension • Data/Information
3. Application • Information
4. Analysis • Information/Knowledge
5. Synthesis • Knowledge
6. Evaluation • Wisdom
Bloom’s Question Words

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Comprehension</th>
<th>Application</th>
<th>Analysis</th>
<th>Synthesis</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who</td>
<td>Explain</td>
<td>Apply</td>
<td>Analyze</td>
<td>Arrange</td>
<td>Why</td>
</tr>
<tr>
<td>What</td>
<td>Indicate</td>
<td>Build</td>
<td>Calculate</td>
<td>Assemble</td>
<td>Assess</td>
</tr>
<tr>
<td>Where</td>
<td>Locate</td>
<td>Demonstrate</td>
<td>Compare</td>
<td>Organize</td>
<td>Defend</td>
</tr>
<tr>
<td>When</td>
<td>Illustrate</td>
<td>Operate</td>
<td>How</td>
<td>Plan</td>
<td>Evaluate</td>
</tr>
<tr>
<td>Describe</td>
<td>Select</td>
<td>Employ</td>
<td>Deconstruct</td>
<td>Propose</td>
<td>Predict</td>
</tr>
<tr>
<td>Tell</td>
<td>Rephrase</td>
<td>Interpret</td>
<td>Examine</td>
<td>Prepare</td>
<td>Support</td>
</tr>
<tr>
<td>Identify</td>
<td>Recognize</td>
<td>Plan</td>
<td>Determine</td>
<td>Set Up</td>
<td>Estimate</td>
</tr>
<tr>
<td>State</td>
<td>Report</td>
<td>Use</td>
<td>Test</td>
<td>Develop</td>
<td>Value</td>
</tr>
</tbody>
</table>

Operational Continuity

- **Operation**
- **Transition**
- **Design**
- **Strategy**

Continual Service Improvement
Developing better ITSM Questions?

- Which Bloom level?
- Question Formula:

 \{Helper Word\} + \{Bloom Question Word\} + \{Process Word\}

- Examples:

 Can you describe the incident?
 How would you identify utility?
 How could we create a better strategy?
 Will we comprehend the impact of the change?
Service Management Application and Usage

- Understand and Apply Bloom’s Taxonomy to convert Data to Wisdom
- Ask effective questions using “question words” at the appropriate level
- Focus on “how” and “why” more than “what” and “where”
Bringing it together
In Summary

- KM=LEARNING
- Clarify KM definitions (DIKW)
- Use Double Loop Learning
- See KM and Service Management as “Systems”
- Ask effective questions to convert data to wisdom
Comments, Questions, Frustrations, Hostilities, Ponderings, Queries?
Thank You

Mcardina@teksystems.com

@MJ_Cardinal

LinkedIn

Michael Cardinal